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Sequence comparison is a widely used computational technique in modern molecular biology. In spite of the
frequent use of sequence comparisons, the important problem of assigning statistical significance to a given
degree of similarity is still outstanding. Analytical approaches to filling this gap usually make use of an
approximation that neglects certain correlations in the disorder underlying the sequence comparison algorithm.
Here, we use the longest common subsequence problem, a prototype sequence comparison problem, to ana-
lytically establish that this approximation does make a difference to certain sequence comparison statistics. In
the course of establishing this difference we develop a method that can systematically deal with these disorder
correlations.
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I. INTRODUCTION

Sequence comparison is of interest in a wide variety of
fields such as molecular biology, biophysics, mathematics,
and computer science. Methods of comparison concern com-
puter scientists who use string comparison for everything
from file searches to image processing[1–4]. Biological se-
quence comparison provides details of the building blocks of
life by allowing the functional identification of newly found
sequences through similarity to already studied ones. Thus, it
has become a standard tool of modern molecular biology.

As with all pattern search algorithms, a crucial component
for the successful application of sequence comparisons is the
ability to discern the biologically meaningful from randomly
occurring patterns. Thus, a thorough characterization of the
strength of patterns withinrandom datais mandatory to es-
tablishing a criterion for discerning meaningful data[5].

The most commonly used sequence alignment algorithms
are the closely related Needleman-Wunsch[6] and Smith-
Waterman[7] algorithms. There have been numerous nu-
merical and analytical studies that attempt to characterize the
behavior of these algorithms on random sequence data
[8–16]. However, there are difficulties with both kinds of
approaches to the problem of characterizing sequence align-
ment algorithms statistically. The numerical methods are by
far too slow to be useful in an environment where tens of
thousands of searches are performed on a daily basis, and
users expect their results on interactive time scales. The ana-
lytical methods, on the other hand, while in principle able to
rapidly characterize sequence alignment statistics, are valid
only in small regions of the vast parameter space of the se-
quence alignment algorithms.

In addition to being restricted to a small region of param-
eter space, current analytical methods have another draw-
back: they rely on an approximation to the actual alignment
algorithm that ignores some subtle correlations within the
sequence disorder. Here, we want to demonstrate that such
correlations do matter and propose an analytical approach
that can in principle deal with these correlations for certain

finite size variants of sequence alignment introduced in Sec.
III.

We will concentrate on the simplest prototype of a se-
quence alignment algorithm, namely, the longest common
subsequence(LCS) problem. More complicated models of
sequence alignment can be adapted to the methodology pre-
sented here in a straightforward manner. However, in the
interest of clarity and efficiency, we proceed with the simple
LCS problem in mind. In the longest common subsequence
problem, similarity between two randomly chosen sequences
over an alphabet of sizec is measured by the length of the
longest string that can be constructed from both sequences
solely by deleting letters. The central quantity characterizing
the statistics of the LCS problem is the expected length of
this longest common subsequence. Its fraction of the total
sequence length in the limit of infinitely long sequences is
called the Chvátal-Sankoff constantac.

Although the LCS problem is one of the simplest align-
ment algorithms, the value of the Chvátal-Sankoff constant
has been remarkably elusive. So far, analytical stabs atac
have led to exact solutions for very short lengths[17] and
proofs for upper and lower bounds[1,3,4,17–21]. Based on
numerical results, there existed a long standing conjecture
for the value of the Chvátal-Sankoff constant. Recently
[22,23], this conjecture has been proven to hold true for the
approximation to the LCS problem that precisely ignores the
disorder correlations mentioned above. Very careful and ex-
tensive numerical treatments[3,4,22,24–26] have revealed
that the true Chvátal-Sankoff constant(including all disorder
correlations) deviates slightly from its value in the uncorre-
lated approximation. This paper seeks to introduce a system-
atic way of understanding the LCS problem with all disorder
correlations included and to establish in an analytically trac-
table environment that uncorrelated and correlated disorder
indeed lead to different results.

The format of this paper will be to summarize the LCS
problem in Sec. II. This section includes a general descrip-
tion of the LCS problem and outlines a commonly used para-
digm for solving for the LCS. In addition, several conven-
tions that are utilized throughout the paper are defined here.
In Sec. III we introduce the finite width model(FWM)
method. In order to spare the reader possibly distracting
mathematical details, we discuss only the overall ideas in the*Electronic address: bundschuh@mps.ohio-state.edu

PHYSICAL REVIEW E 70, 021906(2004)

1539-3755/2004/70(2)/021906(9)/$22.50 ©2004 The American Physical Society70 021906-1



main text and reserve the Appendix for the more detailed
discussion of the mathematical methods employed in the
FWM. In Sec. IV we give the results of the FWM method for
the correlated and uncorrelated LCS problems and discuss
the differences between these two problems that become ob-
vious in the FWM treatment. Section V summarizes our find-
ings.

II. REVIEW OF THE LCS PROBLEM

The LCS of two sequences is the longest sequence that
can be formed solely by deletions in both sequences[17].
Best described by example, the LCS of DARLING and
AIRLINE is ARLIN, with a subsequence length of 5. Given
two sequences of lengthM andN, x1x2¯xM andy1y2¯yN,
over an alphabet of sizec, their LCS can be computed in
OsMNd time. This computation may be conveniently visual-
ized with a rectangular grid such as the one shown in Fig. 1.
In this example, for the two sequences,x1x2¯x6=001001
and y1y¯y6=010110, the LCS 0100 has a length of 4.
Within the grid used to find the LCS, all horizontal and ver-
tical bonds are assigned a value of 0. Each diagonal bond is
designated a value depending on the associated letters in its
row and column. Matching letters earn their diagonal bonds
a value of 1, while nonmatching letters result in an assigna-
tion of 0. Then, each directed path across these various bonds
from the first lattice point in the upper left to the last in the
lower right as drawn in Fig. 1 corresponds to a common
subsequence of the two sequences. The only restriction is
that the path may never proceed against the order of the
sequences. It may only move rightward, downward, or right
and downward in Fig. 1. The length of a common subse-

quence corresponding to a path is the sum of the bonds that
comprise that path. Solving this visual game for the length of
the LCS requires that we find the path of greatest value. This
value will be the length of the LCS.

Recursively, we may define this problem by introducing
the quantity,si , jd as the LCS of the substringsx1x2¯xi and
y1y2¯yj. Defining the LCS of two substrings in this way
allows us to find the LCS leading to each of the lattice points
in Fig. 1. This in turn breaks our path search down into more
manageable steps:

,si, jd = max5,si − 1,jds1d
,si − 1,j − 1d + hsx,yd
,si, j − 1d

6 , s1d

where

hsi, jd = H1 xi = yj ,

0 otherwise,
s2d

and

,s0,jd = ,si,0d = 0. s3d

Of course, once we evaluate the finalksM ,Nd, we have
solved for the length of the LCS. Ultimately, we wish to
evaluate the central quantity that characterizes the LCS prob-
lem, the Chvátal-Sankoff constantac. It characterizes the en-
semble of LCS’s of pairs of randomly chosen sequences with
M =N independently identically distributed(IID ) letters. If
we denote averages over the ensemble byk¯lN, the Chvátal-
Sankoff constant may be defined as

ac ; lim
N→`

kLCSlN

N
. s4d

This can be interpreted as the average growth rate of the LCS
of two random sequences.

As evident from Fig. 1 and the recursive equations(1)–(3)
the length of the LCS depends on the sequences only via the
values of theh’s. If we define the probabilities of 0 or 1
occurring in our random sequences asp or 1−p, respectively,
where 0øpø1, each individualh carries a 2s1−pdp prob-
ability of being zero and ap2+s1−pd2 probability of being 1.
However, the differenthsi , jd are not chosen independently
according to those probabilities, but are subject to subtle cor-
relations.

It is very tempting to neglect these correlations in favor of
choosingN2 IID variablesĥsi , jd according to

ĥsi, jd = H1 with probability 1 −q,

0 with probability q,
s5d

whereq=2s1−pdp, the probability of a bond value being 0.
We will call this the uncorrelated LCS problem and identify
all quantities calculated for this problem by an additional
caret; specifically, we will denote byâc the analog of the
Chvátal-Sankoff constant in the uncorrelated LCS problem.
This approximation to the real LCS problem has been used
in various theoretical approaches to sequence comparison
statistics[12,15,22]. For the LCS problem itself, only very
careful numerical studies could show that the Chvátal-

FIG. 1. Grid representation of the longest common subsequence
problem. The dashed line highlights a solution to the LCS of the
two binary sequences on the edges of the square. Notice that there
exist multiple solutions to this problem.
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Sankoff constants for the correlated and uncorrelated prob-
lems are actually different[3,4,22,24]. However, there are
very real differences. The differences arise due to the fact
that the correlated and uncorrelated cases allow different sets
of possible bond orh values. In the uncorrelated case all
combinations of bond values are allowed to exist. The grid in
Fig. 1 makes it obvious that there areNM bonds each with
two possibilities. Therefore, there must exist 2NM unique
configurations of bond values. Meager by comparison are the
2M+N−1 cases allowed by the two sequences of lengthM and
N, with each letter having the capacity to take on one of two
values in the correlated case. Notice that missing factor of 2
in the correlated case arises due to the fact that one can
alway replace all 0’s with 1’s in order to get the same se-
quences of matches cutting our possible number of bond
value configurations in half. A more concrete realization of
the limited possibilities in the correlated case comes simply
by noticing that there are only two bond value configurations
values any row or column can take up in Fig. 1. Additionally,
a column or row with a value of 0 must be a mirror opposite
of a column or row with a value of 1. And so we can see that
not only does the uncorrelated case account for sets of bond
values that cannot exist, it cannot mimic the specific relation-
ship between different rows and columns of bond values. We
will reveal these differences in a simple approximation to the
LCS problem that allows for closed analytical solutions in
the correlated and uncorrelated cases.

III. FINITE WIDTH LCS

The finite width model we will use in the following over-
lays the grid presented in Fig. 1 with the restriction in width
presented in Fig. 2[23,25]. We will measure the widthW of
such a grid by the number of bands that make up the lattice,
i.e., W=2 in Fig. 2. Although the grid used to analyze the
LCS must be truncated to a finite widthW, our finite strip

extends to an infinite length. Thus, we can still define a width
dependent Chvátal-Sankoff constant

acsWd = lim
N→`

k,sN,NdlN

N
. s6d

In addition to the widthW, the growth rate also depends on
the sequence composition. In our case of alphabet sizec=2
this is characterized by the probabilityp of finding a 0 on
each site within the sequences. While the method we will
present below in principle enables us to calculate any
acsW,pd, we will, in the following, concentrate on the simple
exampleacsW=2,pd shown in Fig. 2. Notice that

ac = lim
N→`

acSW,
1

2
D s7d

from below, and thusacsW, 1
2

d produces a series of lower
bounds to the Chvátal-Sankoff constant.

On the finite width lattice shown in Fig. 2, it is convenient
to redefine our quantities. Aside from the narrower scope
under which we investigate the LCS problem, all other prop-
erties of the grid problem remain the same. Instead of refer-
ring to our lattice points by the coordinatesi and j , we now
utilize a time axist, which points along the allowed, se-
quence forward, direction as well as a coordinate axisx,
which lies perpendicular to thet axis. In place of the old,
values, in this new coordinate system we introducek values.
Keeping track of thesek values can be simplified to a new
set of recursive relationships at each time step. In the nota-
tion defined by Fig. 2 for widthW=2,

ks2,t + 1d = maxHks2,td + hs2,td
ks1,td J , s8d

ks1,t + 1d = max5ks2,t + 1d
ks1,td + hs1,td
ks0,t + 1d

6 , s9d

ks0,t + 1d = maxHks1,td
ks0,td + hs0,td J , s10d

where theh’s take on values of either 1 or 0 in the same way
that we assigned values to our diagonal lines in Fig. 1. Our
set of recursive relationships gives us the longest path value
up to each lattice site. The length of the FWM LCS then
becomesks1,Nd.

Related to ourk values by Eqs.(11) and (12), we define
the h values in order to describe the relative values of our
lattice sites within any given time frame. Utilizing the dia-
grammed definitions of Fig. 2,

hs1,td = ks1,td − ks2,td, s11d

hs0,td = ks1,td − ks0,td. s12d

The recursion relations(8), (9), and (10) can be expressed
entirely via this new quantity as

FIG. 2. This picture shows our 45° counterclockwise rotation to
achieve the orientation from which we will proceed. The blowup
defines the lattice site values(k values), the match values(h val-
ues), and the lattice site difference values(h values). It also defines
our time and width axes. The dashed lines connect the sites between
which ourh values are measured.
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hs1,t + 1d = max50

hs1,td + hs1,td − rs1,td
hs1,td + ss0,td − rs1,td

6 , s13d

hs0,t + 1d = max50

hs0,td + hs0,td − rs0,td
hs0,td + ss1,td − rs0,td

6 , s14d

where

rs1,td = maxhhs2,td,hs1,tdj, s15d

rs0,td = maxhhs0,td,hs0,tdj, s16d

ss1,td = maxh0,hs2,td − hs1,tdj, s17d

ss0,td = maxh0,hs0,td − hs0,tdj. s18d

Several properties conveniently arise from these defini-
tions. First, notice that theh values are independent of the
absolutek values. Furthermore, it may be shown by inspec-
tion that theh values may take on only the valuess0,1d.
Inspecting Fig. 2, we note that each adjacent set ofk values
shares a nodalk. This node attaches itself to the adjacent
sites via a bond of value 0 or 1. Since the nodalk holds only
a single value and the single bonds leading to the adjacent
sites can change this value only by +1, the onlyh values
allowed then become 0 or 1. Having detached the absolutek
values from the FWM LCS problem entirely, we may further
detach the entire FWM from the grid in Fig. 1. Originally we
noted that our FWM LCS on this grid becomesks1,Nd.
However, in order to calculateacsW,pd, the length of the
LCS problem has to be increased infinitely along the time
axis. Time now becomes an unbounded axis in the FWM.
Since the differenceuksx,td−ksy,tdu is bounded byW for all
x and y, the length of the LCS may be measured at anyx.
The growth rate may then be expressed as the averagek
value increase along any coordinate, i.e.,

acsW,pd = kksx,td − ksx,t − 1dl. s19d

Notice thatksx,td−ksx,t−1d[ h0,1j and that as a result our
newly definedacsW,pd carries the condition 0øacsW,pd
ø1.

The formulation given by Eqs.(13) and (14) makes it
clear thaths1,td and hs0,td can be calculated ifhs1,t−1d,
hs0,t−1d, hs2,t−1d, hs1,t−1d, and hs0,t−1d are known.
This allows us to write the time evolution as a Markov
model. In order to do so, the information required for the
time evolution at each time step must be included in the
states. For our uncorrelated states, where theh’s occur ran-
domly, only hs1,t−1d and hs0,t−1d are required to deter-
mine the probable time evolution. Therefore, the uncorre-
lated states simply read(hs1,t−1d ,hs0,t−1d). The
probabilities for the time evolution into the state
(hs1,td ,hs0,td) may then be calculated based on theh-value
probabilities given in Eq.(2). However, in the correlated
case, theh’s are not randomly chosen. Instead, the letters in
each sequence are arranged according to the probabilityp of

a 0 occurring at a single site within the sequences. Some
letters affecth’s across multiple time steps as shown by Fig.
3. In order to calculate the time evolution to timet, hs2,t
−1d ,hs1,t−1d, andhs0,t−1d must be known. Theseh’s de-
pend on the subsequencesxt−1,xt andyt−1,yt. Once these four
letters are known, the state at timet may be determined.
Since these letters cast an influence across multiple time
steps, their information must be retained in order to accu-
rately forecast the upcoming possibilities for theh’s and our
states. Redefining our states as(hs1,td ,hs0,td ,xt ,yt) pre-
serves the necessary information. The remaining information
for calculating theh’s needed for the time evolution, mainly
xt+1 and yt+1, arises according to the letter probabilities.
These probabilities contribute to the probable time evolution
into the nextt+1 state(hs1,t+1d ,hs0,t+1d ,xt+1,yt+1). It can
be shown that correlated states must always containW h
values andW letter values, and that uncorrelated states must
always containW h values.

Although the number of elements in a state depends only
on the width, there exist alternative means of writing our
states. We are free to choose any configuration of continuous
lines to define ourh values across. Figure 4 shows the other
possible configurations in the width-2 FWM. Naturally, the
letter effects differ for each shape, and the proper letters for
each configuration are also illustrated. The various states we
may form all contain the same number ofh and letter values
and obey the same principles. Only the specified set ofh and
letter values differ.

Whatever state we choose to define, the Markov process
describing the FWM LCS is characterized by a transfer ma-

trix T̂. This matrix describes the transitions from a state in

FIG. 3. The diagram maps the influence of letters from the two
sequences…, xt−1, xt, …, and…, yt−1, yt, … on the new orientation.
The letter information required for the evolution from timet−1 to
time t is shown here. The dashed lines represent the chosen con-
figuration for theh’s.

FIG. 4. The dashed lines represent the various configurations by
which theh values can be defined. Note that each of the various sets
of h values implies a different definition of the state, and thus re-
quires a different set of letters. The arrows represent the letters that
are required in each different configuration.
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one time to a state in its immediate future. It is a represen-
tation of the dynamics given by Eqs.(13)–(18). We leave the
mechanics of obtaining this transfer matrix to the Appendix
and focus here on the results.

Once we have found the transfer matrix we may solve for
the vectorsW describing the steady state by solving the linear
system of eigenvalue equations

T̂ ·sW = sW s20d

subject to the normalization condition 1W ·sW=1 where 1W

=s1,1,1,1, . . .d. Note that the size of these vectors depends
on the number of states needed to describe the problem.
More specifically, 16 elements are needed for the correlated
width-2 FWM while the uncorrelated width-2 case requires
only four elements. This steady state vector must contain the
probabilities of observing every single state in the random
ensemble. Note that the directness of this technique allows
for its ready adaptation to more complex sequence compari-
son algorithms along the lines of Ref.[15]. However, this
generally requires a significantly larger number of states,
thus incurring a greater computational cost.

In order to describe the growth rate, we utilize a growth

matrix Ĝ to mark the transitions that result in growth along
some chosen coordinate. The process by which we construct
the growth matrix bears great similarity to the process by
which we construct the transfer matrix. In fact, the growth
matrix omits only those elements of the transfer matrix that
do not contribute to the growth along a chosen coordinate.
Further detail regarding the construction of the growth ma-
trix has been left for the Appendix.

The growth matrix allows us to define the growth vector
gW,

gW = 1W · Ĝ. s21d

This growth vector describes the probable growth from each
of the states. Coupled with the steady state, which provides
us with the likelihood of each state, this allows us to solve
for acsW,pd directly as

acsW,pd = gW ·sW, s22d

since the probability of growth fromt→ t+1, as described by
the growth matrix, is independent of the probability to be in
a certain state at timet.

Before we discuss the results of this approach, we would
like to point out that this technique is not limited to the
calculation of the growth rateacsW,pd. Since the dynamics
of the scores is a Markov process, any quantity can be cal-

culated once the transfer matrixT̂ and the steady state vector
sW are known. For example, any equal-time correlation func-
tion of interest can be obtained directly from the steady state
vectorsW simply by summing over the degrees of freedom that
are not to be included in the correlation function while a
time-correlation function likekistd u jst8dl (the probability of
being in statei at time t given that the system was in statej

at time t8) is simply given bykistd u jst8dl= iW·T̂t−t8 jW, where iW

and jW are vectors all entries of which are zero except for a 1
in the row for statei or j , respectively.

Solving the correlated widthW=2 FWM LCS problem
utilizing the process given by Eqs.(20)–(22), we arrive at the
equation

a2sW= 2,pd =
3 − 5p + 5p2

3 − p − 3p2 + 8p3 − 4p4 , s23d

where p represents the probability of the first letter occur-
ring. The same methodology may be applied to the uncorre-
lated case, where we describe the transition probabilities us-
ing the bond probabilityq defined by Eq.(5),

â2s2,qd =
5 − 7q + 2q2

5 − 5q + q2 . s24d

Notice that the specifics of the state that we choose do not
impact the result in any way. Nor does the choice we make
with respect to measuring the growth. Any combination of
choices results in Eqs.(23) and (24) for the correlated and
uncorrelated cases, respectively. We explicitly verified this
independence of the choice of configurations and definitions
of the growth. These independent results serve as a powerful
check for the correctness of the algebraic manipulations.
Substitutingq=2s1−pdp into Eq.(25), the probability of get-
ting two different letters, or a bond value of 0, gives an
equation expressed in the same quantities as the correlated
Chvátal-Sankoff constant given by Eq.(23), namely,

â2s2,pd =
5 − 14p + 22p2 − 16p3 + 8p4

5 − 10p + 14p2 − 8p3 + 4p4 . s25d

IV. RESULTS

Now we will apply our method to various small width
cases and discuss the implications of the results for the long-
est common subsequence problem. First, we check our com-
putations, and plot the results Eqs.(23) and (25) alongside
numerical data obtained by random sampling in Fig. 5. The
numerical data obtained by choosing 10 000 pairs of random
sequences of length 10 000, calculating their width-2 LCS,
and averaging show no discernible deviation from the ana-
lytical results over the whole range of the parameterp. Al-
ready in this plot forW=2 the differences between the cor-
related and uncorrelated cases are apparent. Coinciding only
for p=0 andp=1, where growth is certain in every step, the
two cases differ at all other points.

Then we look at the width dependences of the growth
rates at the symmetric pointp=1/2.They are summarized in
Table I. The results again verify the difference between the
correlated and uncorrelated cases, with the growth rate in the
uncorrelated case being systematically higher than in the cor-
related case. They also highlight two rather interesting ex-
ceptions. The first occurs for the caseW=0 in which corre-
lations play no role and indeed have no meaning. Assigning
a random bond value(uncorrelated) or two random letters
(correlated) leads to the same effect. Thus, as expected, the
correlated and uncorrelated cases plot identically forW=0.
The second exception, occurring forW=1, narrows the scope
of equality to three values ofp, namely, 0,1

2, and 1. In these
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cases, the equality arises from the exactly similar bond val-
ues being produced from each case. In all other respects, the
correlated and uncorrelated versions ofW=1 differ.

Viewing the solutions of table I also shows that the
growth rateac increases with widthW. This agrees perfectly
with the expectations of the FWM. As width increases so do
the possibilities for growth. In fact, in the limitW→` we
recover the Chvátal-Sankoff constant—the infinite width

growth rate. Along the way, these finite width values ofac
provide lower bounds to the Chvátal-Sankoff constant. In
this way, the FWM conveniently provides a method for gath-
ering systematic solutions for obtaining lower bounds to the
Chvátal-Sankoff constant. The values given forac in this
Table I may be read as a series of ever increasing analytically
solved lower bounds. In this systematics, the FWM displays
one of its advantages over conventional methods. However,
the power and exactness of these solutions exacts a compu-
tational cost that grows as 212W.

Next, we consider the dependence of the growth rates on
the letter probabilityp. Figure 6 shows the full analytical
solutions for various widths plotted as a function ofp. These
graphs verify the trend noted from the discussion of Table I.
However, they allow another interesting observation: while
the difference in values in the correlated and uncorrelated
cases may be immediately perceived, the shape of each of
the curves appears to not depend onW. With increasingW
the curve simply appears to come closer and closer to 1. In
order to verify this, we rescale the difference 1−acsW,pd of
the growth rate from 1 by its value 1−acsW,1 /2d at p
=1/2. As shown in Fig. 7 these rescaled curves are indeed
indistinguishable forW=2, 3, 4, and 5. They clearly fall
into two distinct classes, namely a curve for the correlated
case and a curve for the uncorrelated case. For the uncorre-
lated case, where the resultâcsW=` ,pd=2/fsp2+s1
−pd2d−1/2+1g for infinite width is known[22,23], Fig. 7 also
shows perfect agreement between the finiteW and the infi-
nite W results. Thus, at least in the uncorrelated case, there
are no noticeable finite size effects in the scaling function
even for widths as small asW=2. Assuming that the absence

TABLE I. Finite width Chvátal-Sankoff constanta2sW,1 /2d for correlated andâ2sW,1 /2d for uncorre-
lated disorder. As a reference the value of the Chvátal-Sankoff constant for infinite width is given. In the
correlated case it is known only numerically[25]; in the uncorrelated case it is given by 2/sÎ2+1d [22,23].

Width W Correlated case Uncorrelated case

0 1

2
s0.5d

1

2
s0.5d

1 2

3
s0 . 6̄d

2

3
s0.6̄d

2 7

10
s0.7d

8

11
s0.72̄d

3 1592

2201
s0.723307587d

34

45
s0.75̄d

4 3900482569

5288762638
s0.737503808d

152

197
s0.771573604d

5 1016932681760084189805278879341973703014985562

1359136362951380586870384955918322158719785917
s0.748219759d

706

903
s0.781838317d

` (0.8126) (0.828427125)

FIG. 5. Analytical and numerical data provided by the FWM.
This plot shows further evidence verifying the correctness of the
FWM. Numerical modeling obtained by passing many random se-
quences through a FWM evaluation produces the data points repre-
sented. The analytical FWM matches the numerical data with high
precision for both the correlated and uncorrelated cases at width
W=2. The error for the numerical data presented is smaller than the
symbol size.
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of finite size effects even for small widths also holds true for
the correlated case for which we cannot independently verify
this assumption, the results shown in Fig. 7 support two im-
portant conclusions:(i) the correlated and uncorrelated sys-
tems truly and systematically differ for all widths and thus
also in the limitW→`, and (ii ) these curve shapes can be
understood as universal properties of the correlated and un-
correlated FWM LCS system independent of the widthW.

This implies that, given the value ofac for any pÞ0 or 1,
one may plotac for all values ofp. In other words, a single
data point suffices to define a finite width system whether it
be correlated or uncorrelated.

The differences between the correlated and uncorrelated
cases, highlighted by Fig. 7, result from the subtle restric-
tions that correlations place on bond values. As an example,
for the width-2 FWM, three bond values contribute to a
single transition. Thus 23=8 unique sets of bond values exist.
Uncorrelated bond values allow for any of these eight possi-
bilities at any given time. However, because the letters affect
correlated bonds in multiple time steps, each correlated state
has only four allowed transitions. In fact, in any width the
FWM provides a maximum of four allowed transitions for all
correlated states. The reasons for this are elucidated in the
Appendix. In addition to the number of possibilities lacking
in the correlated case, the allowed transitions create subtle
relationships creating patterns of growth that differ signifi-
cantly from the uncorrelated case. These differences account
for the systematic separation viewed in Fig. 7.

V. CONCLUSION

We conclude that within the FWM method differences
between the correlated and uncorrelated LCS problems can
be established analytically. The dependence of the finite
width growth rate on the letter probabilityp already follows
a scaling law for the relatively small widths that are analyti-
cally accessible. These scaling laws are distinctively differ-
ent for the correlated and uncorrelated cases within the
FWM, thereby providing an analytical argument that the dif-
ferences between the correlated and uncorrelated cases ex-
plicitly revealed for small finite widths here may persist in
the limit of infinite widths. This piece of analytical evidence
hints at the distinctness of the Chvátal-Sankoff constants in

FIG. 6. Finite width growth rates as a function of the letter
probability p for different widths.

FIG. 7. Rescaled growth rate forW=2,3,4,5 in thecorrelated
and uncorrelated cases as well as theW=` result for the uncorre-
lated case. All results for the correlated case and all results of the
uncorrelated case are virtually indistinguishable from each other
while the correlated growth rate clearly follows a pattern that is
distinctly different from the uncorrelated growth rate.

FIG. 8. The four possible futures or transitions available to the
state (0,0,0,0) are obtained diagrammatically. These transitions,
reading from the upper left, are(0,0,0,0), (1,0,1,0), (0,1,0,1), and
(1,1,1,1). Note that the states are organized withh values first, then
letters written in from the top to the bottom in this diagram. In order
to help clarify the origin of these four sets of numbers, the quanti-
ties relevant to the new states have been starred.
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the correlated and uncorrelated cases. However, although
there exists an analytical solution for the infinite width un-
correlated case, it should be noted that no such solution for
the infinite width correlated case is available. Thus this evi-
dence has been analytically verified only for widths up to 5
for correlated finite width systems, and the pattern suggested
by this data set may yet be the result of some finite width
effect. Nonetheless, the FWM method in itself provides a
systematic means to deal with these correlations that can be
generalized from the LCS to other sequence comparison
problems.

APPENDIX: OBTAINING THE TRANSFER AND GROWTH
MATRICES

Our transfer matrix, as discussed in the main text, de-
scribes transitions from one state into the next. It allows us to
determine the probable fraction of time spent in any state,
i.e., the steady state, and coupled with the growth matrix it
allows us to calculate the growth rate. Obtaining the matrix
elements involves finding all transition probabilities and
placing them into our matrix. To begin, one simply takes a
state and writes all possible transitions out of this state.
When one has done this for all possible states, then the trans-
fer matrix is complete. As an example we have calculated the
first column of the transfer matrix in the correlated caseW
=2.

Starting with the first column, which represents our
(0,0,0,0) state, we note that there exist only four possible
futures. Once we choose the two remaining letters as(0,0),
(1,0), (0,1), or (1,1) the differencesh are completely deter-
mined. Figure 8, shows the determination of the state transi-
tions that result from these four sets of letters. These four
transitions then become the matrix elements of the first col-
umn. The probability weighing each transition is determined
by the new set of letters that bring about the new state, or the
starred letters in Fig. 8. In the order listed above, the states
they bring about are weighed by the probabilitiesp2, s1
−pdp, ps1−pd, ands1−pd2.

In order to formulate a growth matrix, we pick the line
defining the growth and delete the elements of the transfer
matrix that do not contribute to the growth on this line. In
this example we have chosen to measure our growth along
the bottom line. As an example, in Fig. 8, the two top dia-
grams contribute to growth because the lattice value along
the bottom line grows in both these cases. However, for the
bottom pair, the lower lattice value remains static; thus their
contributions are missing from the growth matrix shown be-
low.

Repeating this for each possible starting state leads to the
following matrix representations where the states are ordered
from least to greatest in binary notation
(0000,0001,0010,0011,…).

T̂ =1
p2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 s1 − pdp s1 − pdp 0 0 s1 − pdp 0 s1 − pdp s1 − pdp s1 − pdp 0 0 s1 − pdp s1 − pdp s1 − pdp s1 − pdp

0 s1 − pdp s1 − pdp 0 s1 − pdp 0 s1 − pdp 0 0 0 s1 − pdp s1 − pdp s1 − pdp s1 − pdp s1 − pdp s1 − pdp

0 0 0 s1 − pd2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 p2 0 p2 0 p2 0 0 0 0 0 0 0 0 0

s1 − pdp 0 0 0 s1 − pdp 0 s1 − pdp 0 0 0 0 0 0 0 0 0

0 0 0 s1 − pdp 0 s1 − pdp 0 s1 − pdp 0 0 0 0 0 0 0 0

0 s1 − pd2 0 0 0 s1 − pd2 0 s1 − pdp2 0 0 0 0 0 0 0 0

0 p2 0 0 0 0 0 0 p2 p2 0 0 0 0 0 0

0 0 0 s1 − pdp 0 0 0 0 0 0 s1 − pdp s1 − pdp 0 0 0 0

s1 − pdp 0 0 0 0 0 0 0 s1 − pdp s1 − pdp 0 0 0 0 0 0

0 0 s1 − pd2 0 0 0 0 0 0 0 s1 − pd2 s1 − pd2 0 0 0 0

0 0 0 p2 0 p2 0 p2 0 0 p2 p2 p2 p2 p2 p2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s1 − pd2 0 0 0 s1 − pd2 0 s1 − pd2 0 s1 − pd2 s1 − pd2 0 0 s1 − pd2 s1 − pd2 s1 − pd2 s1 − pd2

2 ,

Ĝ =1
p2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 s1 − pdp 0 0 s1 − pdp 0 s1 − pdp 0 0 0 0 s1 − pdp s1 − pdp s1 − pdp s1 − pdp

0 s1 − pdp 0 0 s1 − pdp 0 s1 − pdp 0 0 0 0 0 s1 − pdp s1 − pdp s1 − pdp s1 − pdp

0 0 0 s1 − pd2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 p2 0 p2 0 0 0 0 0 0 0 0 0

0 0 0 0 s1 − pdp 0 s1 − pdp 0 0 0 0 0 0 0 0 0

0 0 0 0 0 s1 − pdp 0 s1 − pdp 0 0 0 0 0 0 0 0

0 0 0 0 0 s1 − pd2 0 s1 − pdp2 0 0 0 0 0 0 0 0

0 p2 0 0 0 0 0 0 p2 p2 0 0 0 0 0 0

0 0 0 s1 − pdp 0 0 0 0 0 0 s1 − pdp s1 − pdp 0 0 0 0

s1 − pdp 0 0 0 0 0 0 0 s1 − pdp s1 − pdp 0 0 0 0 0 0

0 0 s1 − pd2 0 0 0 0 0 0 0 s1 − pd2 s1 − pd2 0 0 0 0

0 0 0 0 0 p2 0 p2 0 0 0 0 p2 p2 p2 p2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 s1 − pd2 0 s1 − pd2 0 0 0 0 0 s1 − pd2 s1 − pd2 s1 − pd2 s1 − pd2

2 .
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