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Sequence comparison is a widely used computational technique in modern molecular biology. In spite of the
frequent use of sequence comparisons, the important problem of assigning statistical significance to a given
degree of similarity is still outstanding. Analytical approaches to filling this gap usually make use of an
approximation that neglects certain correlations in the disorder underlying the sequence comparison algorithm.
Here, we use the longest common subsequence problem, a prototype sequence comparison problem, to ana-
lytically establish that this approximation does make a difference to certain sequence comparison statistics. In
the course of establishing this difference we develop a method that can systematically deal with these disorder
correlations.
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[. INTRODUCTION finite size variants of sequence alignment introduced in Sec.
1.

Sequence comparison is of interest in a wide variety of We will concentrate on the simplest prototype of a se-
fields such as molecular biology, biophysics, mathematicsguence alignment algorithm, namely, the longest common
and computer science. Methods of comparison concern consubsequencéLCS) problem. More complicated models of
puter scientists who use string comparison for everythingequence alignment can be adapted to the methodology pre-
from file searches to image processiig4. Biological se- sented here in a straightforward manner. However, in the
quence comparison provides details of the building blocks ofnterest of clarity and efficiency, we proceed with the simple
life by allowing the functional identification of newly found LCS problem in mind. In the longest common subsequence
sequences through similarity to already studied ones. Thus, Rroblem, similarity between two randomly chosen sequences
has become a standard tool of modern molecular biology. OVer an alphabet of size is measured by the length of the

As with all pattern search algorithms, a crucial componen{Ondest string that can be constructed from both sequences
for the successful application of sequence comparisons is t lely by Qeletlpghletters. The lcentral cgluantlty charalcterlﬁlngf
ability to discern the biologically meaningful from randomly hii, Sl(t)a:(igséls(,:tsc%n:meorl;iﬁbgg)c?ueer:cles tI tse f?;(gt?grt]egf ?r?gttot?i |
gti((::\rgntﬁgo?zg(tatg]r?\.sTvtl]il:;i’r:ntjh;rLOgg?ajghrzg:éirtgsl?oneOST-th equence Ienggh in the limit of infinitely long sequences is

I L . . : called the Chvétal-Sankoff constaat
tablishing a criterion for discerning meaningful d4&.

h | d i lqorith Although the LCS problem is one of the simplest align-
The most commonly used sequence alignment ag_orlt Mhent algorithms, the value of the Chvatal-Sankoff constant
are the closely related Needleman-Wung6h and Smith-

. has been remarkably elusive. So far, analytical staba. at
Waterman([7] algorithms. There have been numerous nu- y y b,

ical and Mtical studies th h ) hhave led to exact solutions for very short lengfiig] and
merical and analytical studies that attempt to characterize the o ¢, upper and lower bounds,3,4,17—21 Based on
behavior of these algorithms on random sequence da

PP : : merical results, there existed a long standing conjecture
[8-16. However, there are difficulties with both Kinds of 5 116 yalue of the Chvatal-Sankoff constant. Recently

approaches to the problem of characterizing sequence aligiy; >3 this conjecture has been proven to hold true for the
ment algorithms stat|st|cal_ly. The nu_merlcal methods are b pproximation to the LCS problem that precisely ignores the
far tao slow to be useful in an enviranment where tens Olyisorder correlations mentioned above. Very careful and ex-
thousands of searches are performed on a daily basis, al sive numerical treatment8,4,22,24—2p have revealed

users expect their results on interactive time scales. The ang; . the true Chvatal-Sankoff constaintcluding all disorder

lytical methods, on the other hand, while in principle able toq,o|ationg deviates slightly from its value in the uncorre-

rapid_ly character_ize sequence alignment statistics, are vali ted approximation. This paper seeks to introduce a system-
only in STall reg|on|s Of.tﬁe vast parameter space of the SEitic way of understanding the LCS problem with all disorder
quence alignment algorithms. correlations included and to establish in an analytically trac-

In addition to being restr'|cted to a small region of ParaM-taple environment that uncorrelated and correlated disorder
eter space, current analytical methods have another dra"iﬁdeed lead to different results

back: they rely on an approximation to the actual alignment
algorithm that ignores some subtle correlations within th

sequence disorder. Here, we want to demonstrate that sug
correlations do matter and propose an analytical approac
that can in principle deal with these correlations for certainti

The format of this paper will be to summarize the LCS
roblem in Sec. Il. This section includes a general descrip-
n of the LCS problem and outlines a commonly used para-
igm for solving for the LCS. In addition, several conven-
ons that are utilized throughout the paper are defined here.
In Sec. Il we introduce the finite width modgFWM)
method. In order to spare the reader possibly distracting
*Electronic address: bundschuh@mps.ohio-state.edu mathematical details, we discuss only the overall ideas in the
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0 1 0 1 1 0 quence corresponding to a path is the sum of the bonds that
. comprise that path. Solving this visual game for the length of
0 L | 0 1 0 0 1 the LCS requires that we find the path of greatest value. This
B value will be the length of the LCS.
* Recursively, we may define this problem by introducing
o 1 0 \0 1 the quantity¢(i,j) as the LCS of the substringgx,- - -x; and
0 I Y1Yo" - -y;. Defining the LCS of two substrings in this way
: \ allows us to find the LCS leading to each of the lattice points
b \ in Fig. 1. This in turn breaks our path search down into more
0 S 0 1 1 0
1 ¥ manageable steps:
R €i- 1))
0 . Y S g g : €(,j)=max €(i-1,j - 1)+ n(xy) (, (1)
\\ o P, €(I1J_1)
0 1 0 1 X 0 \\\1 where
4 (=i =% @
. K 0 otherwise,
0 1 0 1 1 0o
1 : and
€(0,j) =4(i,0)=0. 3

FIG. 1. Grid representation of the longest common subsequence .
problem. The dashed line highlights a solution to the LCS of the Of course, once we evaluate the firkiM,N), we have

two binary sequences on the edges of the square. Notice that the?@lved for the length of t,he LCS. UItlmat_er, we wish to

exist multiple solutions to this problem. evaluate the central quantity that characterizes the LCS prob-
lem, the Chvétal-Sankoff constaat. It characterizes the en-

mble of LCS’s of pairs of randomly chosen sequences with

=N independently identically distributedID) letters. If

e denote averages over the ensembl¢ by, the Chvatal-

S%ankof“f constant may be defined as

main text and reserve the Appendix for the more detailecf\/f3
discussion of the mathematical methods employed in th%v
FWM. In Sec. IV we give the results of the FWM method for
the correlated and uncorrelated LCS problems and discu

the differences between these two problems that become ob- . (LCYy
vious in the FWM treatment. Section V summarizes our find- &= ,\II'LTL N (4)
ings.

This can be interpreted as the average growth rate of the LCS
of two random sequences.
Il. REVIEW OF THE LCS PROBLEM As evident from Fig. 1 and the recursive equati@hs{3)

The LCS of two sequences is the longest sequence thztatc]e length of the LCS depends on the sequences only via the

can be formed solely by deletions in both sequeridds values of they's. If we define the probabilities of O or 1
Best described by example, the LCS of DARLING ang 0¢cumng in our random sequencespasr 1-p, respectively,

AIRLINE is ARLIN, with a subsequence length of 5. Given th'.?tre ?fbp.gl’ each 'Sd'g'f?f i ;:Zamets, %-ﬁl_r})g F’mbl'
two sequences of lengttd andN, X;X,- - Xy andyys* Yy, aoiiity oT being zero and a p)” probability oT being L.

over an alphabet of size, their LCS can be computed in Howeyer, the differenty(i ’j,)_ are not chosen. independently
O(MN) time. This computation may be conveniently visual- acco_rdlng to those probabilities, but are subject to subtle cor-
ized with a rectangular grid such as the one shown in Fig. 1r_elat|_ons. . _ .

In this example, for the two sequencesx,: - -Xs=001001 It |s_veryztempt|n_g to ngg_le_ct these qorrelanons in favor of
and y1y---y=010110, the LCS 0100 has a length of 4. choosingN“ IID variables (i, ) according to

Within the grid used to find the LCS, all horizontal and ver- o 1 with probability 1 -q,

tical bonds are assigned a value of 0. Each diagonal bond is 7(i,j) = (5
designated a value depending on the associated letters in its

row and column. Matching letters earn their diagonal bondsvhereq=2(1-p)p, the probability of a bond value being 0.

a value of 1, while nonmatching letters result in an assigna¥e will call this the uncorrelated LCS problem and identify
tion of 0. Then, each directed path across these various bondd quantities calculated for this problem by an additional
from the first lattice point in the upper left to the last in the caret; specifically, we will denote b§. the analog of the
lower right as drawn in Fig. 1 corresponds to a commonChvatal-Sankoff constant in the uncorrelated LCS problem.
subsequence of the two sequences. The only restriction iBhis approximation to the real LCS problem has been used
that the path may never proceed against the order of thi various theoretical approaches to sequence comparison
sequences. It may only move rightward, downward, or rightstatistics[12,15,22. For the LCS problem itself, only very
and downward in Fig. 1. The length of a common subse<careful numerical studies could show that the Chvéatal-

0 with probability q,
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extends to an infinite length. Thus, we can still define a width

dependent Chvétal-Sankoff constant
A AN w ¢(N,N
= <~ W) = fim LN ©
//’ p N—o N
In addition to the widthw, the growth rate also depends on
Kol - - ’ the sequence composition. In our case of alphabetcsize
7(3' ) LLED this is characterized by the probabilityof finding a 0 on
Sh(le-1) Mh(lh) AN each site within the sequences. While the method we will
k(,t-1) na.n w present below in principle enables us to calculate any
e e o7 a(W, p), we will, in the following, concentrate on the simple
2 BOLEDA_, hOY ’ examplea,(W=2,p) shown in Fig. 2. Notice that
k(0,t-1) no.H
. 1
—- a.= limag| W, = (7
N— oo 2

FIG. 2. This picture shows our 45° counterclockwise rotation to
achieve the orientation from which we will proceed. The blowup from below, and thusac(W,%) produces a series of lower
defines the lattice site valu€k valueg, the match valuegz val- bounds to the Chvatal-Sankoff constant.

uey, and the lattice site difference valugsvalues. It also defines On the finite width lattice shown in Fig. 2, it is convenient
our time and width axes. The dashed lines connect the sites betweed redefine our quantities. Aside from the narrower scope
which ourh values are measured. under which we investigate the LCS problem, all other prop-

erties of the grid problem remain the same. Instead of refer-

Sankoff constants for the correlated and uncorrelated prolring to our lattice points by the coordinateandj, we now
lems are actually different3,4,22,24. However, there are utilize a time axist, which points along the allowed, se-
very real differences. The differences arise due to the facguence forward, direction as well as a coordinate axis
that the correlated and uncorrelated cases allow different sevghich lies perpendicular to thieaxis. In place of the old
of possible bond ory values. In the uncorrelated case all values, in this new coordinate system we introdkealues.
combinations of bond values are allowed to exist. The grid irKeeping track of thes& values can be simplified to a new
Fig. 1 makes it obvious that there axM bonds each with set of recursive relationships at each time step. In the nota-
two possibilities. Therefore, there must existM2unique tion defined by Fig. 2 for widthtw=2,
configurations of bond values. Meager by comparison are the
2M*N-1 cases allowed by the two sequences of leridtand KL+ 1) = >({k(Z,t) +7(2,1) }

. ) X , =ma , (8)
N, with each letter having the capacity to take on one of two k(1,t)
values in the correlated case. Notice that missing factor of 2

in the correlated case arises due to the fact that one can

’ H ’ H k(2!t + 1)
alway replace all 0’s with 1's in order to get the same se-
quences of matches cutting our possible number of bond k(1,t+ 1) =max k(1,t) + »(1,t) 1, (9
value configurations in half. A more concrete realization of k(O,t+1)
the limited possibilities in the correlated case comes simply
by noticing that there are only two bond value configurations

S ” k(1,t)

values any row or column can take up in Fig. 1. Additionally, k(0,t+1)=ma , (10)
a column or row with a value of 0 must be a mirror opposite k(0,t) + 7(0.1)

of a column or row with a value of 1. And so we can see tha here they's take on values of either 1 or 0 in the same way
not only does the uncorrelated case account for sets of bor’l

values that cannot exist, it cannot mimic the specific relation- at we assigned values to our diagonal lines in Fig. 1. Our
ship between different rows and columns of bond values. Wset of recursive relationships gives us the longest path value

\ : . . L %p to each lattice site. The length of the FWM LCS then
will reveal these differences in a simple approximation to thebecomesk(l N)

LCS problem that allows for closed analytical solutions in Related to oulk values by Eqs(11) and (12), we define

the correlated and uncorrelated cases. the h values in order to describe the relative values of our
lattice sites within any given time frame. Utilizing the dia-

IIl. EINITE WIDTH LCS grammed definitions of Fig. 2,
The finite width model we will use in the following over- h(1,t) =k(1,t) - k(2,1), (11
lays the grid presented in Fig. 1 with the restriction in width
presented in Fig. 223,25. We will measure the widthV of h(0,t) = k(1,t) — k(0,1). (12)

such a grid by the number of bands that make up the lattice,
i.e., W=2 in Fig. 2. Although the grid used to analyze the The recursion relationg8), (9), and (10) can be expressed
LCS must be truncated to a finite widil, our finite strip  entirely via this new quantity as
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- 3

0 X1 X

h(Lt+1)=max h(L)+ 7L -rLy [, (13 A

S

h(1,t) +s(0,t) —r(1,t
[h(1,0+ 50,0 ~r(1,0) h(l,t-l?\/u,\o\
0 h(o’t_l), w’t), ,\

h(O,t+1) = max h(0,) + n0.H 10 |, (14) ‘ “
(h(0,t) +s(1,t) = r(O,t) | / /

where Y1 Wi
r(1,t) = max5(2,t),h(1,1)}, (15) FIG. 3. The diagram maps the influence of letters f_rom the two
sequences., X1, X, ..., and..., Y1, Yy, ... on the new orientation.

The letter information required for the evolution from timel to
time t is shown here. The dashed lines represent the chosen con-
figuration for theh's.

r(0,t) = max7(0,t),h(0,t)}, (16)

s(1,t) = max0,7(2,t) - h(1,1)}, (17)
a 0 occurring at a single site within the sequences. Some
s(0,t) = max0,7(0,t) — h(0,t)}. (18) letters affecty’'s across multiple time steps as shown by Fig.
) ) ) 3. In order to calculate the time evolution to tien(2,t
Several properties conveniently arise from these def|n|-_1) 7(1,t-1), and7(0,t—1) must be known. Thess's de-
tions. First, notice that thé values are independent of the pen’d on the s'ubsequehoesl % andy,_,,y, Once these four
a_lbsolutek values. Furthermore, it may be shown by inSpeC'Ietters are known, the stat’e at timaﬁay be determined.
tion that theh values may take on only the valu€8,1).  gjnce these letters cast an influence across multiple time
Inspecting Fig. 2, we note that each adjacent sétwdlues  qiong  their information must be retained in order to accu-
shares a nodak. This node attaches itself to the adjacent aie|y forecast the upcoming possibilities for this and our
S|te.s via a bond of value 0 or 1. Since the _nddhblds only states. Redefining our states @¥1,t),h(0,t),x,Y,) pre-
a single value and the single bonds leading to the adjacentyeq the necessary information. The remaining information

sites can change this value only by +1, the ohlyalues for calculatin , ; ; :
. g they's needed for the time evolution, mainly
allowed then become 0 or 1. Having detached the absl::lutext+1 and y,.,, arises according to the letter probabilities.

values from th? FWMLCS p“’b'e”.‘ entirgly, We may furtherThese probabilities contribute to the probable time evolution
detach the entire FWM from the grid in Fig. 1. Originally we ;1o nextt+1 state(h(1,t+1),h(0,t+1), X1, Yiss). It can

noted that our FWM LCS on this grid becomégl,N). be shown that correlated states must always cortditn

However, in order to calculate,(W,p), the length of the .o andw letter values, and that uncorrelated states must
LCS problem has to be increased infinitely along the t'mealways contairW h values.

axis. Time now becomes an unbounded axis in the FWM. " Ajthough the number of elements in a state depends only
Since the differencek(x,t)—k(y,t)| is bounded by for all 4 the width, there exist alternative means of writing our
x andy, the length of the LCS may be measured at any gtates. We are free to choose any configuration of continuous
The growth rate may then be expressed as the aveage|ines to define ouh values across. Figure 4 shows the other
value increase along any coordinate, i.e., possible configurations in the width-2 FWM. Naturally, the
ad(W, p) = (k(x,t) — k(x,t - 1)). (19) letter effe(;ts differ for each _shape, and the proper letters for
each configuration are also illustrated. The various states we
Notice thatk(x,t)=k(x,t-1)€{0,1} and that as a result our may form all contain the same numbertoéind letter values
newly defineday(W,p) carries the condition €a,(W,p)  and obey the same principles. Only the specified sétarfd
<1. letter values differ.
The formulation given by Egqs(13) and (14) makes it Whatever state we choose to define, the Markov process
clear thath(1,t) and h(0,t) can be calculated if(1,t—-1),  describing the FWM LCS is characterized by a transfer ma-

h(0,t-1), 7(2,t-1), 7(1,t-1), and 7(0,t-1) are known. iy T. This matrix describes the transitions from a state in
This allows us to write the time evolution as a Markov

model. In order to do so, the information required for the N\ N\ N\

time evolution at each time step must be included in the , N PR
states. For our uncorrelated states, wheresfseoccur ran- Va Y 3L
domly, only h(1,t-1) and h(0,t—1) are required to deter- \\/ \\J s

mine the probable time evolution. Therefore, the uncorre- N A

lated states simply read(h(1,t-1),h(0,t=1)). The

probabilities for the time evolution into the state FiG. 4. The dashed lines represent the various configurations by
(h(1,1),h(0,t)) may then be calculated based on thealue  which theh values can be defined. Note that each of the various sets
probabilities given in Eq(2). However, in the correlated of h values implies a different definition of the state, and thus re-
case, they's are not randomly chosen. Instead, the letters inguires a different set of letters. The arrows represent the letters that
each sequence are arranged according to the probgbitity are required in each different configuration.

021906-4



FINITE WIDTH MODEL SEQUENCE COMPARISON PHYSICAL REVIEW EO, 021906(2004)

one time to a state in its immediate future. It is a represen- Solving the correlated widtiW=2 FWM LCS problem

tation of the dynamics given by Eqa.3)<18). We leave the utilizing the process given by EqR0)—(22), we arrive at the

mechanics of obtaining this transfer matrix to the Appendixequation

and focus here on the results. 5
Once we have found the transfer matrix we may solve for a,(W=2,p) = 3-5p+5p ,

the vectors describing the steady state by solving the linear 3-p-3p*+8p’-4p

system of eigenvalue equations

(23

where p represents the probability of the first letter occur-
T.3=8 (20) ring. The same methodology may be applied to the uncorre-
) R lated case, where we describe the transition probabilities us-
subject to the normalization condition-&1 where 1 ing the bond probabilityy defined by Eq(5),
=(1,1,1,1,..). Note that the size of these vectors depends 5 -7+ 202
on the number of states needed to describe the problem. H2o=——"—>%
More specifically, 16 elements are needed for the correlated S-5q+q

width-2 FWM while the uncorrelated width-2 case requireStice that the specifics of the state that we choose do not
only four elements. This steady state vector must contain thﬁnpact the result in any way. Nor does the choice we make
probabilities of observing every single state in the randomyitp respect to measuring the growth. Any combination of
ens.emble. Note tha'; the directness of this technique a”C’W_éhoices results in Eq$23) and (24) for the correlated and
for its ready adaptation to more complex sequence comparyincorrelated cases, respectively. We explicitly verified this
son algorithms along the lines of RefL5]. However, this  independence of the choice of configurations and definitions
generally requires a significantly larger number of stateSef the growth. These independent results serve as a powerful
thus incurring a greater computational cost. check for the correctness of the algebraic manipulations.
In orAder to describe the growth rate, we utilize a QVOWthSubstitutingq:2(1—p)p into Eq.(25), the probability of get-
matrix G to mark the transitions that result in growth along ting two different letters, or a bond value of 0, gives an
some chosen coordinate. The process by which we construgtjuation expressed in the same quantities as the correlated
the growth matrix bears great similarity to the process byChvatal-Sankoff constant given by E@3), namely,
which we construct the transfer matrix. In fact, the growth 5 3 4
matrix omits only those elements of the transfer matrix that 5-14p+22p° - 16p° + 8p

(24)

do not contribute to the growth along a chosen coordinate. %l(2p)= 5-10p+ 14p? - 8p° + 4p* @9
Further detail regarding the construction of the growth ma-
trix has been left for the Appendix.
The growth matrix allows us to define the growth vector
g, IV. RESULTS
> - Now we will apply our method to various small width

g=1-G. (21) cases and discuss the implications of the results for the long-
This growth vector describes the probable growth from eaclest common subsequence problem. First, we check our com-
of the states. Coupled with the steady state, which provideputations, and plot the results Eq23) and (25) alongside
us with the likelihood of each state, this allows us to solvenumerical data obtained by random sampling in Fig. 5. The

for aJ(W, p) directly as numerical data obtained by choosing 10 000 pairs of random
. sequences of length 10 000, calculating their width-2 LCS,
a(W,p)=g-s, (22)  and averaging show no discemible deviation from the ana-

since the probability of growth from—t+1, as described by lytical results over the whole range of the parameteAl-

the growth matrix, is independent of the probability to be inf€ady in this plot folW=2 the differences between the cor-

a certain state at time related and uncorrelated cases are apparent. Coinciding only
Before we discuss the results of this approach, we wouldor P=0 andp=1, where growth is certain in every step, the

like to point out that this technique is not limited to the two cases differ at all other points.

calculation of the growth rate,(W,p). Since the dynamics ~ Then we look at the width dependences of the growth

of the scores is a Markov process, any quantity can be calates at the symmetric poipt=1/2. They are summarized in

culated once the transfer matiixand the steady state vector Table 1. The results again verify the difference between the
S are known. For example. anv equal-time cgrrelation func_correlated and uncorrelated cases, with the growth rate in the
' ble, any €q uncorrelated case being systematically higher than in the cor-

tion of interest can be obtained directly from the steady state, | _ted case. They also highlight two rather interesting ex-

vectors simply t.’y summing over the degrees of f.rEEdom thatceptions. The first occurs for the cadé=0 in which corre-
are not to be included in the correlation function while a

time-correlation function like(i()|j(t')) (the probability of lations play no role and indeed have no meaning. Assigning

T . : . . , a random bond valuéuncorrelategl or two random letters
being in state at timet given that the system was in stgte . rejateq leads to the same effect. Thus, as expected, the

at timet’) is simply given by(i(t)|j(t))=i-T"'], wherei  correlated and uncorrelated cases plot identically\i57O0.
andj are vectors all entries of which are zero except for a 1The second exception, occurring f#=1, narrows the scope
in the row for stata or j, respectively. of equality to three values qf, namely, 0,%, and 1. In these
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—

= T T T growth rate. Along the way, these finite width valuesagf
— Correlated FWM provide lower bounds to the Chvatal-Sankoff constant. In
A P ikl A this way, the FWM conveniently provides a method for gath-
*m\ A Uncorrelated Numerical Data ‘{f 1 ering systematic solutions for obtaining lower bounds to the
£ Chvatal-Sankoff constant. The values given &rin this
A\ A Table | may be read as a series of ever increasing analytically
& solved lower bounds. In this systematics, the FWM displays
one of its advantages over conventional methods. However,
Y ‘Af the power and exactness of these solutions exacts a compu-
tational cost that grows as'®'.
Next, we consider the dependence of the growth rates on
the letter probabilityp. Figure 6 shows the full analytical
0 02 04 06 08 1 solutions for various widths plotted as a functionpofThese
p graphs verify the trend noted from the discussion of Table I.
FIG. 5. Analytical and numerical data provided by the FWM. Howeyer, they .allow anther interesting observation: while
the difference in values in the correlated and uncorrelated

This plot shows further evidence verifying the correctness of the

FWM. Numerical modeling obtained by passing many random selases may be immediately perceived, the shape of each of

quences through a FWM evaluation produces the data points repréhe CUIVes appears to not dependWnWith increasingW
sented. The analytical FWM matches the numerical data with higljihe curve S|lmply. appears to come C_Ioser and closer to 1. In
precision for both the correlated and uncorrelated cases at widtArder to verify this, we rescale the difference d(W, p) of
W=2. The error for the numerical data presented is smaller than thihe growth rate from 1 by its value Ig(W,1/2) at p
symbol size. =1/2. Asshown in Fig. 7 these rescaled curves are indeed
indistinguishable fortW=2, 3, 4, and 5. They clearly fall
cases, the equality arises from the exactly similar bond valinto two distinct classes, namely a curve for the correlated
ues being produced from each case. In all other respects, tigase and a curve for the uncorrelated case. For the uncorre-
correlated and uncorrelated versionsVé£ 1 differ. lated case, where the resul(W=x,p)=2/[(p?+(1
Viewing the solutions of table | also shows that the —p)?)~*2+1] for infinite width is known[22,23, Fig. 7 also
growth ratea. increases with widtiW. This agrees perfectly shows perfect agreement between the filiteand the infi-
with the expectations of the FWM. As width increases so damite W results. Thus, at least in the uncorrelated case, there
the possibilities for growth. In fact, in the limv—o we  are no noticeable finite size effects in the scaling function
recover the Chvatal-Sankoff constant—the infinite widtheven for widths as small a&4/=2. Assuming that the absence

=2,p)
»
»

aZ(W
&
,}
"

TABLE |I. Finite width Chvatal-Sankoff constamt,(W, 1/2) for correlated and,(W,1/2) for uncorre-
lated disorder. As a reference the value of the Chvatal-Sankoff constant for infinite width is given. In the
correlated case it is known only numericalB5]; in the uncorrelated case it is given by(22+1) [22,23.

Width W Correlated case Uncorrelated case
0 1 1
—(0. —(0.
2( 5 2( 5
1 R 2 —
—(0.6 —(0.6
3( ) 3( )
2 7 8 _
—(0. —(0.7
10( 7 11( 2
® igz(o 723307587 %(o 79
2201 45
4 MZO 737503808 @(0 771573604
5288762638 197
5 1016932681760084189805278879341973703014985562 706
(0,748219759 ——(0.78183831Y
1359136362951380586870384955918322158719785917 903
00 (0.8126 (0.82842712%
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1 1 1 1 1
0.9 -
0.8 - -
/a: | =
= 0.7F -
S
< =1
0.6 -
0.5- W=0 -
1 PR | - PR 1 N " N | - PR 1 PR
04 02 0.4 0.6 0.8 1
p
l 1 1 1 1
A 1*
09 ] FIG. 8. The four possible futures or transitions available to the
I W=5 1 state (0,0,0,0 are obtained diagrammatically. These transitions,
_08r ] reading from the upper left, ar®,0,0,0, (1,0,1,0, (0,1,0,3, and
T T 1 (1,1,1,). Note that the states are organized witkialues first, then
%&0‘7_ ] letters written in from the top to the bottom in this diagram. In order
(= I =1 1 to help clarify the origin of these four sets of numbers, the quanti-
osT ] ties relevant to the new states have been starred.
0.5F - Lo . .
I W=0 ] This implies that, given the value @f for any p#0 or 1,
| P T BN P one may plota, for all values ofp. In other words, a single
0 02 04 5 08 08 1 data point suffices to define a finite width system whether it

S ) be correlated or uncorrelated.
FIG. 6. Finite width growth rates as a function of the letter  The differences between the correlated and uncorrelated
probability p for different widths. cases, highlighted by Fig. 7, result from the subtle restric-

of finite size effects even for small widths also holds true fortions that correlations place on bond values. As an example,
for the width-2 FWM, three bond values contribute to a

the correlateq case for which we car.mot. independently Ve.”f%ingle transition. Thus®=8 unique sets of bond values exist.
this assumption, the results shown in Fig. 7 support two im-

ortant conclusiong(i) the correlated and uncorrelated sys- Uncorrelated bond values allow for any of these eight possi-
!coems trulv and s ssjc(ématicall differ for all widths and tgus bilities at any given time. However, because the letters affect
truly and sy y correlated bonds in multiple time steps, each correlated state

also in the limitW— o, and(ii) these curve shapes can be

understood as universal properties of the correlated and urE—as only four allowed transitions. In fact, in any width the
correlated FWM LCS system independent of the with WM provides a maximum of four allowed transitions for all

correlated states. The reasons for this are elucidated in the

1 ——— T ——T— Appendix. In addition to the number of possibilities lacking
= | ] in the correlated case, the allowed transitions create subtle
Q sk ks ] relationships creating patterns of growth that differ signifi-
; 1 F//> 1 cantly from the uncorrelated case. These differences account
< | E//F ] for the systematic separation viewed in Fig. 7.
soer S/ & ]

S | 5 V. CONCLUSION

ol 04 -

= | We conclude that within the FWM method differences

Honl ] between the correlated and uncorrelated LCS problems can

. be established analytically. The dependence of the finite
width growth rate on the letter probability already follows

0 RN R S I SR T | IS T N AT SR S SR N TH 1 . . . .

) 0.2 0.4 0.6 0.8 1 a scaling law for the relatively small widths that are analyti-

p cally accessible. These scaling laws are distinctively differ-
FIG. 7. Rescaled growth rate foW=2,3,4,5 in thecorrelated ~ €Nt for the correlated and uncorrelated cases within the
and uncorrelated cases as well as e result for the uncorre- FWM, thereby providing an analytical argument that the dif-
lated case. All results for the correlated case and all results of thierences between the correlated and uncorrelated cases ex-
uncorrelated case are virtually indistinguishable from each otheplicitly revealed for small finite widths here may persist in
while the correlated growth rate clearly follows a pattern that isthe limit of infinite widths. This piece of analytical evidence
distinctly different from the uncorrelated growth rate. hints at the distinctness of the Chvatal-Sankoff constants in

021906-7



N. CHIAAND R. BUNDSCHUH PHYSICAL REVIEW E70, 021906(2004

the correlated and uncorrelated cases. However, although Starting with the first column, which represents our
there exists an analytical solution for the infinite width un-(0,0,0,Q state, we note that there exist only four possible
correlated case, it should be noted that no such solution fdutures. Once we choose the two remaining letterg0a®,

the infinite width correlated case is available. Thus this evi(1,0), (0,1), or (1,1) the differencesh are completely deter-
dence has been analytically verified only for widths up to Smined. Figure 8, shows the determination of the state transi-
for correlated finite width systems, and the pattern suggesteghns that result from these four sets of letters. These four
by this data set may yet be the result of some finite widthyansitions then become the matrix elements of the first col-
effect. Nonetheless, the FWM method in itself provides a,mn The probability weighing each transition is determined
systematic means to deal with these correlations that can g, 16 new set of letters that bring about the new state, or the
generalized from the LCS to other sequence cOmparisOQirreq letters in Fig. 8. In the order listed above, the states
problems. they bring about are weighed by the probabilitigs (1
-p)p, p(1-p), and(1-p).

In order to formulate a growth matrix, we pick the line
defining the growth and delete the elements of the transfer
Our transfer matrix, as discussed in the main text, dematrix that do not contribute to the growth on this line. In
scribes transitions from one state into the next. It allows us téhis example we have chosen to measure our growth along
determine the probable fraction of time spent in any statethe bottom line. As an example, in Fig. 8, the two top dia-
i.e., the steady state, and coupled with the growth matrix igrams contribute to growth because the lattice value along
allows us to calculate the growth rate. Obtaining the matrixhe bottom line grows in both these cases. However, for the
elements involves finding all transition probabilities andbottom pair, the lower lattice value remains static; thus their
placing them into our matrix. To begin, one simply takes acontributions are missing from the growth matrix shown be-

state and writes all possible transitions out of this statelow.

When one has done this for all possible states, then the trans- Repeating this for each possible starting state leads to the
fer matrix is complete. As an example we have calculated théollowing matrix representations where the states are ordered
first column of the transfer matrix in the correlated cig¢e from least to greatest in  binary  notation

APPENDIX: OBTAINING THE TRANSFER AND GROWTH
MATRICES

=2. (0000,0001,0010,0011,).
p? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 (1-pp 1-pp O 0 @@-pp O 1-pp 1-pp X-pp O 0 (@A-pp X-pp 1-pp (1-pp
0 (@-pp XI-pp O (@-pp O (1-pp 0 0 0 (@-pp (1-pp (I-pp 1-pp (1-pp (1-pp
0 0 0 @-p? O 0 0 0 0 0 0 0 0 0 0 0
0 0 p? 0 p? 0 p? 0 0 0 0 0 0 0 0 0
1-pp O 0 0 @(1-pp 0 (1-pp 0 0 0 0 0 0 0 0 0
0 0 0 1-pp 0 1-pp 0 1-pp 0 0 0 0 0 0 0 0
s 0 (1-p? 0 0 0 (1-p)? 0 (1-p)p? 0 0 0 0 0 0 0 0
0 p? 0 0 0 0 0 0 p? p? 0 0 0 0 0 0
0 0 0 (@-pp O 0 0 0 0 0 @-pp A-pp O 0 0 0
1-pp O 0 0 0 0 0 0 @-pp A-pp O 0 0 0 0 0
0 0 @1-p? o 0 0 0 0 0 0 (@-p? @-p?® O 0 0 0
0 0 0 pz 0 pz 0 pz 0 0 pz pz pz pz pz pz
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(1-p* o 0 0 @(1-p* 0 @(@-p* 0 (1-p* @-p? O 0 (1-p? (1-p? 1-p? (1-p?
p? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 (@-pp O 0 (@-pp O (1-pp 0 0 0 0 (@-pp I-pp 1-pp (1-pp
0 (Q-pp O 0 (@-pp O (1-pp 0 0 0 0 0 (@-pp (1-pp (I-pp 1-pp
0 0 0 @-p? © 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 p? 0 p? 0 0 0 0 0 0 0 0 0
0 0 0 0 @-pp O (1-pp 0 0 0 0 0 0 0 0 0
0 0 0 0 0 (@-pp O (1-pp 0 0 0 0 0 0 0 0
. 0 0 0 0 0 (@-p? 0 @-pp* O 0 0 0 0 0 0 0
0 p? 0 0 0 0 0 0 p? p? 0 0 0 0 0 0
0 0 0 (@-pp O 0 0 0 0 0 @-pp A-pp O 0 0 0
1-pp 0 0 0 0 0 0 0 1-pp (L-pp 0 0 0 0 0 0
0 0 (1-p)? 0 0 0 0 0 0 0 (1-p? (1-p? 0 0 0 0
0 0 0 0 0 p? 0 p? 0 0 0 0 p? p? p? p?
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 @1-p> 0 (@-p?® O 0 0 0 0 (1-p? (1-p? (1-p?® @-p?
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